
Architecture (Layers) Activation Function

Flatten N/A

Dense (x3) ReLu()

Both the traditional autoencoder and the VAE were built as Keras models using the Tensorflow and NumPy libraries, the former
being an open-source ML platform and the latter being a Python package that reduces runtime for numeric computations. In
order to allow for the visualization of the latent space, the number of latent dimensions was set to 2. For the VAE, in addition to
MSE loss, Kullback-Leibler (KL) Divergence loss was also chosen because of its ability to measure the difference between two
probability distributions. The VAE performed with the lowest MSE and KL Divergence losses with the following parameters (with
1 epoch of 57 steps and the optimizer being Adam(0.0001, 0.5)):

Architecture (Layers) Activation Function

Dense (x3) Sigmoid()

Reshape N/A

Architecture (Layers) Activation Function

Conv2D (x5) LeakyReLU(0.02)

Flatten ReLu()

Dense SeLU()

Architecture (Layers) Activation Function

Dense (x2) SeLu()

Conv2DTranspose (x4) LeakyReLU(0.02)

Conv2DTranspose Sigmoid()

Compressing Tissue Sample Images Using
Machine Learning

Aishwaryaa Udeshi , Dr. Guangyu Wang
John Foster Dulles High School, Sugar Land, TX

Houston Methodist Research Institute, Houston, TX
Gifted and Talented Mentorship Program, Fort Bend ISD, TX

Introduction

1

2

3

1 3 2

Machine learning (ML) is defined as the process a machine undergoes to learn patterns in data, which are then used to
make predictions. A supervised ML algorithm is trained on both features (what the algorithm bases its predictions on) and labels
(what the correct predictions are for the features). However, an unsupervised ML algorithm is trained without labels, finding
patterns among the features by themselves. A self-supervised ML algorithm is a type of unsupervised ML algorithm that
generates labels from the unlabeled data itself, and an autoencoder is a type of self-supervised ML algorithm that encodes
data, particularly images, into a smaller space without losing any necessary information. This reduces the dimensionality
of the data by removing unnecessary information, which reduces the complexity of the data, making it less muddled.
Autoencoders have numerous applications in the medical imaging world; namely, they are used to assist in diagnoses. For
instance, an autoencoder may be used to detect if a tissue is benign or malignant without the distinction even having been
made by humans by feeding it images of both and allowing it to separate them into two groups based on what it identifies as the
distinguishing factor.

Figure 1. Diagram of a traditional autoencoder in the context of identifying tissue as benign or malignant (Mridha et al., 2021)

A traditional autoencoder, also referred to as simply an autoencoder, consists of an encoder algorithm and a decoder
algorithm. The encoder compresses the pixels into a vector called the latent space, and the decoder attempts to reconstruct
the original image. A Variational Autoencoder (VAE) also consists of an encoder and a decoder, but the encoder outputs a
latent distribution, a vector containing the mean and standard deviation of locations for each data point, instead of directly
outputting the latent vector. A sampling layer converts the latent distribution into the latent vector by sampling data points from
a normal distribution and scaling them to the mean and standard deviation in the latent distribution, introducing an element of
randomness that allows the model to create more complex, realistic predictions.

Figure 2. Diagram of a VAE (Anwar, 2021)

Methodology

Secondly, using the Zenodo “100,000 histological images of human colorectal cancer and healthy tissue” dataset, which
contains 7,180 images of human colorectal tissue, both healthy and pathological. The types of tissue included were adipose
(ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa
(NORM), cancer-associated stroma (STR), and colorectal adenocarcinoma epithelium (TUM). A VAE was built and trained in
Google Colab, an online Python Integrated Development Environment (IDE). First, the images were preprocessed by resizing
them to the same shape, which was (64, 64, 4). To merge them into the final training dataset, the images were shuffled
randomly and separated into batches of 128.

Figure 4. Examples of preprocessed images from the Zenodo dataset

Methodology (Continued)

First, a traditional autoencoder was developed using the MNIST Dataset of Handwritten Digits, which contains 60,000 images of
scanned handwritten numbers.

Figure 3. Examples of images from the MNIST dataset

After the images were shuffled randomly and separated into batches of 128 to create smaller groups for the model to process,
he autoencoder was trained. Mean Squared Error (MSE) loss was chosen to evaluate the accuracy of the model as it is a
standard loss evaluation tool in ML. It performed with the lowest MSE loss with the following parameters (with 10 epochs and
the optimizer being Adam):

Encoder Decoder

Encoder Decoder

Note: Batch normalization was performed between each layer in both the encoder anf decoder

Results

Results (Continued)

Figure 5. Loss and Validation Plots for the traditional autoencoder Figure 6. Latent Space for the traditional autoencoder

Figure 7. Original vs. Reconstructed Image Comparisons for the traditional autoencoder

Figure 8. MSE and KL Divergence loss
plots for the VAE

Figure 9. Original vs. Reconstructed Image Comparisons for the VAE

Findings/Conclusion
The traditional autoencoder performed far better than the VAE; specifically the MSE loss of the former was 0.0674 while the
latter’s was 0.312. In other words, the traditional autoencoder performed over 4.5 times better than the VAE. However, Figure 6
shows that there are still many improvements to be made. While some numbers clustered together strongly (such as 1,
represented by orange, 9, represented by gray, and 2, represented by olive), others were spread out throughout the graph
(such as 0, represented by red, 7, represented by cyan, and 4, represented by blue). The model was less able to identify the
specific sets of features characterizing the latter category of numbers, in turn making its ability to reconstruct them poorer. This
is reflected in Figure 7 as well, where 4 was consistently reconstructed as 9. The autoencoder’s losses decreased throughout
training as shown in Figure 5; therefore, the model displays no signs of overtraining.

As for the VAE, Figure 8 shows the MSE loss to have steadily decreased throughout training, but the KL loss to have spiked at
times. This means that while the model was improving throughout the process, the latent distribution differed widely from the
predefined distribution at some points. Figure 9 shows that the model was able to identify different shades as a feature and
account for those in its reconstructed images but failed to pick up edges and contours.

Discussion
In the future, both models would benefit from data augmentation, which involves rotating and scaling the current images to
create new ones. This creates more data for the models to train on without needing new images. This would be particularly
useful for the VAE as the number of images for each type of tissue is slightly unbalanced as noted by the authors of the dataset.
Both models would also benefit from an increase in the number of latent dimensions; for this study, it was set to 2 to allow for
the visualization of the model’s groupings. However, realistically, this number does not need to be as small as 2 despite the
goal being to reduce the number of dimensions needed to represent an image. With more complex imaging software, the latent
space may still be able to be visualized in higher dimensions. Additionally, the VAE would benefit from learning rate scheduling,
which adjusts the learning rate as the model trains instead of manually by the researcher after they analyze the results. This
was especially an issue with the computational limitations posed by the equipment used in this study, which slowed the speed
of training and therefore slowed the process of adjusting the parameters to improve the accuracy. Finally, experimenting with
different types of neural networks such as CNNs within the encoders and decoders would likely lead to gains for both
algorithms.

